MATHEMATICS STANDARD LEVEL PAPER 1 Thursday 2 November 2006 (afternoon) 1 hour 30 minutes | (| Cand | idate | sessi | ion n | ι | ımbe | r | | |---|------|-------|-------|-------|---|------|---|--| | | | | | | | | | | ## INSTRUCTIONS TO CANDIDATES - Write your session number in the boxes above. - Do not open this examination paper until instructed to do so. - Answer all the questions in the spaces provided. - Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary. | 1 | Let $\mathbf{A} = \begin{pmatrix} 3 \end{pmatrix}$ | 2 | and $R =$ | 2 | 2 | Find, in terms of k , | |----|--|---|-----------|---|---|-----------------------------| | 1. | k | 4 | | 1 | 3 | i. Tilia, ili terilis or k, | | (a) | 2A - B | | |-----|--------|--| | | | | | | | | | (1) 1 (O 4 D | | |--------------------|---| | | 1 | | (b) $\det(2A - B)$ | ١ | |
 |
 | |------|------| |
 |
 | - 2. Let $\ln a = p$, $\ln b = q$. Write the following expressions in terms of p and q. - (a) $\ln a^3 b$ | (b) | ln | $\left(\frac{\sqrt{a}}{b}\right)$ | | |-----|----|-----------------------------------|--| | | | \ \ | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | |--|------|--|------|--|--|--|------|--|--|--|--|--|--|------|--|--|------|--|--|--|--|--|--|--|--|------|--|------|--|--| | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | |
 | | | | | | |
 | |
 | | | |
 | | | | | | |
 | | |
 | | | | | | | | |
 | |
 | | | 3. The box and whisker diagram shown below represents the marks received by 32 students. - (a) Write down the value of the median mark. - (b) Write down the value of the upper quartile. - (c) Estimate the number of students who received a mark greater than 6. | | | | | |
 |
 | | |
 | | | |-------|-------|-------|-------|-------|-------|---|-------|--|-------|---|--|-------|---|---|---|-------|---|-------|---|------|--|---|------|---|-------|---|------|---|-------|----------------|--|--| | | | | | |
 |
 | | |
. . | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 | | | |
 | | |
 | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 | | | |
 | | |
. . | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 | | | |
 | | |
 | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 | | | |
 | | |
 | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 | | | |
 | | |
 | | | | | | | | |
_ | | | | | | | | | | _ | | | | |
 |
• |
٠ |
٠ |
• |
٠ |
 | ٠ |
• | |
٠ | • | |
• | • | • | |
٠ | • |
• | • | | | ٠ | | • |
• | • |
 | • |
٠ |
 | | | **4.** The following diagram shows the graph of a function f. Consider the following diagrams. Complete the table below, noting which one of the diagrams above represents the graph of - (a) f'(x); - (b) f''(x). | | Graph | Diagram | |-----|--------|---------| | (a) | f'(x) | | | (b) | f''(x) | | - 5. Events E and F are independent, with $P(E) = \frac{2}{3}$ and $P(E \cap F) = \frac{1}{3}$. Calculate - (a) P(F); | (1.) | - | <i>-</i> - | - | |------|------|------------|-------------| | (b) |) P(| (E) | $\supset F$ | |
 |
 | |------|------| | | | | | | | | | |
 |
 | | | | | | | |
 |
 | |
 |
 | |
 |
 | 6. Part of the graph of the function $y = d(x-m)^2 + p$ is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, 2). - (a) Write down the value of - (i) m; - (ii) p. - (b) Find *d*. |
• |
• | • • | • | • • | • | • | • | • | • • | • | • |
• | • |
• | • | • | • |
• | • | • | • |
• • | • | • • | |-------|-------|-----|---|-----|---|---|---|---|-----|---|---|-------|---|-------|---|---|---|-------|---|---|---|-------|---|-------|---|-------|---|-------|---|-------|---|-------|---|-------|---|-------|---|---|---|-----|
 | 7. | The | line L passes through the points $A(3, 2, 1)$ and $B(1, 5, 3)$. | |----|-----|--| | | (a) | Find the vector \overrightarrow{AB} . | | | (b) | Write down a vector equation of the line L in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. | - **8.** Find the **exact** value of x in each of the following equations. - (a) $5^{x+1} = 625$ - (b) $\log_a (3x+5) = 2$ - Let g(x) = 3x 2, $h(x) = \frac{5x}{x 4}$, $x \ne 4$. 9. - Find an expression for $(h \circ g)(x)$. Simplify your answer. (a) | (1.) | 0 1 41 4 | (1) | |------|----------------------|----------------------| | (b |) Solve the equation | $(h \circ g)(x) = 0$ | |
 |
 | | |------|------|--| |
 |
 | | |
 |
 | | |
 |
 | | | | | | |
 |
 10. | The velocity v in m s ⁻¹ of a moving body at time t seconds is given by $v = e^{2t-1}$.
When $t = 0.5$ the displacement of the body is 10 m. Find the displacement when $t = 1$. | |-----|--| 11. | The line L passes through A(0, 3) and B(1, 0). The origin is at O. The point R(x , 3–3 is on L , and (OR) is perpendicular to L . | | | | | | | | | | | | | | | |-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | | (a) | Write down the vectors \overrightarrow{AB} and \overrightarrow{OR} . | | | | | | | | | | | | | | | | (b) | Use the scalar product to find the coordinates of R. | 12. | A fair coin is tossed five times. Calculate the probability of obtaining | | |-----|--|--| | | (a) exactly three heads; | | | | (b) at least one head. | - 13. The function f is defined by $f: x \mapsto 30\sin 3x \cos 3x$, $0 \le x \le \frac{\pi}{3}$. - (a) Write down an expression for f(x) in the form $a \sin 6x$, where a is an integer. | | (h) | Solve | $f(\mathbf{r}) = 0$ | giving your answers | in terms | of π | |---|-----|-------|---------------------|---------------------|-----------|-----------| | ١ | וטו | SOIVE | f(x) = 0 | giving your answers | III terms | 01π | |
 |
 | | |------|------|--| |
 |
 | | 14. | The heights of certain flowers follow a normal distribution. It is known that 20 % of these flowers have a height less than 3 cm and 10 % have a height greater than 8 cm. | |-----|--| | | Find the value of the mean μ and the standard deviation σ . | | | | |
 | | | | | | | | |
 | |
 | |
 | | | | | |
 | | | | | | | | |------|------|--|--|--|--|--|--|--|------|--|------|--|------|--|------|--|--|--|------|--|--|--|--|--|--|--| |
 | | | | | | | | |
 | |
 | | | | | | | | | | | | | | | | |
 | | | | | | | | |
 | |
 | | | | | | | | | | | | | | | | |
 | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | | | | | | | | |
 | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | | | | | | | | |
 | | | | | | | | |
 | |
 | | | |
 | | | | | | | | | | | | |
 | | | | | | | | |
 | |
 | | | |
 | | | | | | | | | | | | |
 | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | | | | | | | | |
 | | | | | | | | |
 | |
 | | | |
 | | | | | | | | | | | | |
 | | | | | | | | |
 | |
 | | | |
 | | | | | | | | | | | | |
 |
 | | | | | | | |
 | |
 | |
 | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | |
 | |
 | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | | | | | | | | 15. The shaded region in the diagram below is bounded by $f(x) = \sqrt{x}$, x = a, and the x-axis. The shaded region is revolved around the x-axis through 360°. The volume of the solid formed is 0.845π . Find the value of a.